All Notebooks | Help | Support | About
This Entry
Permalink
URI
URI Label
Revisions
Add to List
Edit Entry
Export:
 XML
Templates
09-06-2016, First step in synthesis of the hetero-oxadiazole, reaction of 2-6 dichloropyrazine with malononitrile, following procedure from Nikishkin et al (2013)
09-11-2016, Work up of the second attempt at step 1
09-23-2016. Step 1 redo, on 5 gram scale
09-24-2016. Work up of 09-23-2016
09-29-2016, work up and purification of [4]
09/28/2016 Step 4, on a larger scale this time. Conversion of methyl 6-chloropyrazine-2-carboxylate [3] to methyl 6-hydrazineylpyrazine-2-carboxylate [4] using hydrazine according to AEW 85-5
10/07/2016 GC mass spec characterization of rxn from [4]->[5]
10/18/16: Trial work up of reaction of 6-chloropyrazinecarbonitrile and hydrazine
10/4/16: Trial of Step 4:Product [4] to Product [5]
10/6/16: Trial Synthesis of 6-hydrazinelypyrazine-2-carbonitrile and from 6- hydrazinelypyrazine-2-carboximidhydrazide from chloropyrazinecarbonitrile
9/12/16 Step 2 in synthesis. Going from [2]->[3]
9/13/16: Work-up of product [3] and TLC plates
9/15/16: Second Synthesis of Methyl 6-chloropyrazine-2-carboxylate [product 3]
9/18/16-9/20/16: Trial Synthesis of Methyl 6-hydrazineylpyrazine-2-carboxylate (Product 4)
9/22/16: Inconclusive Trial Synthesis of Methyl 6-hydrazineylpyrazine-2-carboxylate (Product 4)
9/25/16-9/27/16: Synthesis of Product 3, methyl 6-chloropyrazine-2-carboxylate
9/27/2016 Late Night
9/29/2016 HNMR of product 4, and HNMR of product 4 after D2O exchange 01/10/2016
9/8/16-Continued Synthesis of 2-(6-chloropyrazin-2(1H)-ylidene)malononitrile
CNMR so far
HNMR so far, of all relevant compounds
The Synthetic scheme of Hetero-oxadiazole Synthesis
Archives
Authors
Sections
Tools
Show/Hide QR Code
Show/Hide Keys
28th September 2016 @ 02:02

To the opaque yellow reflux product from yesterday, 75 mL of 1 M HCl was added. Upon addition, solution immediately went from yellow to dark red. After acid addition, the mixture was poured into a separatory funnel, shaken and vented, and the aqueous layer poured through the bottom. The organic layer was poured off the top into a round bottom flask and evaporated under low pressure to yield the expected red crystals. These flask was then filled with 120 mL each diethyl ether and deionized water and swirled. The red crystals formed a phase between the water and ether. The mixture was poured over a buchner funnel with filter paper and vacuum filtered, and the crystals collected were washed once more with a small ammount of ether and water poured over the top. The crystals were collected and left under high vacuum overnight.